Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Mar Drugs ; 21(9)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37755110

RESUMO

Dinoflagellate Alexandrium minutum Halim is commonly associated with harmful algal blooms (HABs) in tropical marine waters due to its saxitoxin production. However, limited information is available regarding the cellular and metabolic changes of A. minutum in nutrient-deficient environments. To fill this gap, our study aimed to investigate the transcriptomic responses of A. minutum under nitrogen and phosphorus deficiency. The induction of nitrogen and phosphorus deficiency resulted in the identification of 1049 and 763 differently expressed genes (DEGs), respectively. Further analysis using gene set enrichment analysis (GSEA) revealed 702 and 1251 enriched gene ontology (GO) terms associated with nitrogen and phosphorus deficiency, respectively. Our results indicate that in laboratory cultures, nitrogen deficiency primarily affects meiosis, carbohydrate catabolism, ammonium assimilation, ion homeostasis, and protein kinase activity. On the other hand, phosphorus deficiency primarily affects the carbon metabolic response, cellular ion transfer, actin-dependent cell movement, signalling pathways, and protein recycling. Our study provides valuable insights into biological processes and genes regulating A. minutum's response to nutrient deficiencies, furthering our understanding of the ecophysiological response of HABs to environmental change.

2.
J Fungi (Basel) ; 8(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35330248

RESUMO

Erwinia mallotivora, the causal agent of papaya dieback disease, is a devastating pathogen that has caused a tremendous decrease in Malaysian papaya export and affected papaya crops in neighbouring countries. A few studies on bacterial species capable of suppressing E. mallotivora have been reported, but the availability of antagonistic fungi remains unknown. In this study, mycelial suspensions from five rhizospheric Trichoderma isolates of Malaysian origin were found to exhibit notable antagonisms against E. mallotivora during co-cultivation. We further characterised three isolates, Trichoderma koningiopsis UKM-M-UW RA5, UKM-M-UW RA6, and UKM-M-UW RA3a, that showed significant growth inhibition zones on plate-based inhibition assays. A study of the genomes of the three strains through a combination of Oxford nanopore and Illumina sequencing technologies highlighted potential secondary metabolite pathways that might underpin their antimicrobial properties. Based on these findings, the fungal isolates are proven to be useful as potential biological control agents against E. mallotivora, and the genomic data opens possibilities to further explore the underlying molecular mechanisms behind their antimicrobial activity, with potential synthetic biology applications.

3.
Biology (Basel) ; 10(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34571703

RESUMO

The toxin-producing dinoflagellate Alexandrium minutum is responsible for the outbreaks of harmful algae bloom (HABs). It is a widely distributed species and is responsible for producing paralytic shellfish poisoning toxins. However, the information associated with the environmental adaptation pathway and toxin biosynthesis in this species is still lacking. Therefore, this study focuses on the functional characterization of A. minutum unigenes obtained from transcriptome sequencing using the Illumina Hiseq 4000 sequencing platform. A total of 58,802 (47.05%) unigenes were successfully annotated using public databases such as NCBI-Nr, UniprotKB, EggNOG, KEGG, InterPRO and Gene Ontology (GO). This study has successfully identified key features that enable A. minutum to adapt to the marine environment, including several carbon metabolic pathways, assimilation of various sources of nitrogen and phosphorus. A. minutum was found to encode homologues for several proteins involved in saxitoxin biosynthesis, including the first three proteins in the pathway of saxitoxin biosynthesis, namely sxtA, sxtG and sxtB. The comprehensive transcriptome analysis presented in this study represents a valuable resource for understanding the dinoflagellates molecular metabolic model regarding nutrient acquisition and biosynthesis of saxitoxin.

4.
Mar Pollut Bull ; 172: 112850, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34391012

RESUMO

This study investigates bacterial diversity and potential pathogens in the international ships' ballast water at Tanjung Pelepas Port, Malaysia, using 16S rRNA amplicon sequencing. Thirty-four bacterial phylum, 305 families, 577 genera, and 941 species were detected in eight ballast water samples of different origins. The similarity of the bacterial composition between samples was found to be random and not tied to geographical locations. The bacterial abundance did not seem to be affected by related physicochemical except for temperature. Ballast water samples with a temperature lower than 25 °C showed a relatively lower bacterial abundance. A total of 33 potential pathogens were detected from all ballast water samples. Pseudomonas spp., Tenacibaculum spp., Flavobacteriaceae spp., Halomonas spp., and Acinetobacter junii are the potential pathogens with more than 10% OTU prevalence. This study would provide beneficial information for further enhancing ballast water microorganism guidelines in Malaysia.


Assuntos
Navios , Água , Acinetobacter , Humanos , Malásia , RNA Ribossômico 16S
5.
Materials (Basel) ; 14(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34443166

RESUMO

ß-wollastonite (ßW) has sparked much interest in bone defect recovery and regeneration. Biomaterial-associated infections and reactions between implants with human cells have become a standard clinical concern. In this study, a green synthesized ßW, synthesized from rice husk ash and a calcined limestone precursor, was incorporated with mullite, maghemite, and silver to produce ß wollastonite composite (ßWMAF) to enhance the tensile strength and antibacterial properties. The addition of mullite to the ßWMAF increased the tensile strength compared to ßW. In vitro bioactivity, antibacterial efficacy, and physicochemical properties of the ß-wollastonite and ßWMAF were characterized. ßW and ßWMAF samples formed apatite spherules when immersed in simulated body fluid (SBF) for 1 day. In conclusion, ßWMAF, according to the tensile strength, bioactivity, and antibacterial activity, was observed in this research and appropriate for the reconstruction of cancellous bone defects.

6.
Biology (Basel) ; 10(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209952

RESUMO

Begomovirus has become a potential threat to the agriculture sector. It causes significant losses to several economically important crops. Given this considerable loss, the development of tools to study viral genomes and function is needed. Infectious clones approaches and applications have allowed the direct exploitation of virus genomes. Infectious clones of DNA viruses are the critical instrument for functional characterization of the notable and newly discovered virus. Understanding of structure and composition of viruses has contributed to the evolution of molecular plant pathology. Therefore, this review provides extensive guidelines on the strategy to construct infectious clones of Begomovirus. Also, this technique's impacts and benefits in controlling and understanding the Begomovirus infection will be discussed.

7.
Insects ; 11(8)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759701

RESUMO

Stingless bee honey (SBH) is an astounding 'miracle liquid' with countless medicinal properties for various diseases such as gastroenteritis, cataracts, as well as for wound-healing. However, knowledge regarding it is still rather scarce. Henceforth, it is intriguing for us to contemplate on the less-studied stingless bee and its honey in particular. First and foremost, the antimicrobial ability of honey from eight different stingless bee species was tested to further proven its health benefit. Homotrigona fimbriata honey showed the highest antimicrobial activity with inhibition against five bacteria; Serratia marcescens, Escherichia coli, Bacillus subtilis, Alcaligenes faecalis and Staphylococcus aureus. The next aim of our study is to characterize their honey bacterial community via the use of 16S rRNA amplicon sequencing technology. A total of eight bacterial phyla, 71 families, 155 genera and 70 species were identified from our study and two of the stingless bee species honey were determined to have the highest bacterial diversity compared to other six stingless bee species, namely Heterotrigona erythrogastra and Tetrigona melanoleuca. Furthermost, Lactobacillus malefermentans was thought to be the native dominant bacteria of SBH due to its predominant presence throughout all studied species. The aforementioned SBH's antimicrobial results and characterization study of its bacterial diversity are hoped to carve the pathway towards extending its probiotic ability into our everyday lives.

8.
Mar Drugs ; 18(2)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033403

RESUMO

Saxitoxin is an alkaloid neurotoxin originally isolated from the clam Saxidomus giganteus in 1957. This group of neurotoxins is produced by several species of freshwater cyanobacteria and marine dinoflagellates. The saxitoxin biosynthesis pathway was described for the first time in the 1980s and, since then, it was studied in more than seven cyanobacterial genera, comprising 26 genes that form a cluster ranging from 25.7 kb to 35 kb in sequence length. Due to the complexity of the genomic landscape, saxitoxin biosynthesis in dinoflagellates remains unknown. In order to reveal and understand the dynamics of the activity in such impressive unicellular organisms with a complex genome, a strategy that can carefully engage them in a systems view is necessary. Advances in omics technology (the collective tools of biological sciences) facilitated high-throughput studies of the genome, transcriptome, proteome, and metabolome of dinoflagellates. The omics approach was utilized to address saxitoxin-producing dinoflagellates in response to environmental stresses to improve understanding of dinoflagellates gene-environment interactions. Therefore, in this review, the progress in understanding dinoflagellate saxitoxin biosynthesis using an omics approach is emphasized. Further potential applications of metabolomics and genomics to unravel novel insights into saxitoxin biosynthesis in dinoflagellates are also reviewed.


Assuntos
Dinoflagellida/genética , Dinoflagellida/metabolismo , Saxitoxina/biossíntese , Saxitoxina/química , Vias Biossintéticas , Cianobactérias/metabolismo , Genômica , Metabolômica , Neurotoxinas/metabolismo , Biossíntese de Proteínas , Proteômica , Saxitoxina/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...